Abstract
Equipping robots and computers with emotional intelligence is becoming important in Human-Computer Interaction (HCI). Bio-signal based methods are found to be reliable and accurate than conventional methods as they directly manifest the underlying activity of the Autonomous Nervous System (ANS). This paper focuses on recognizing six emotional states (happiness, sadness, fear, surprise, disgust and neutral) from Electrocardiogram (ECG) signals that were obtained from multiple subjects. The emotional data was collected by inducing emotions internally in the subject using audio visual clips. The normalized QRS derivative signal was obtained from captured emotional ECG data by means of a non-linear transform. Hilbert Huang Transform (HHT) based analysis was done to obtain the emotional features in low, high and total (low and high together) the frequency ranges. The classification results indicate that low frequency Intrinsic Mode Functions (IMF) contain more emotional information compared to the other frequency ranges. The performance of the system can be improved further by analyzing the information in the low frequency range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.