Abstract

This paper proposes an analytical model that clarifies the relationship between specific place and human emotions as well as the cause of the emotions using tweet data with location information. In addition, Twitter data with location information are analyzed to show the effectiveness of our proposed model. First, geotags are provided to collect Twitter data and increase the number of data for analysis. Second, training data with emotion labels based on the emotion expression dictionary are created and used, and supervised learning is done using fastText to obtain the emotion estimates. Finally, by using the result, topic extraction is performed to estimate the causes of the emotions. As a result, the transition of emotion in time and space as well as its cause is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.