Abstract

Abstract: Previous research on emotion recognition of Twitter users centered on the use of lexicons and basic classifiers on pack of words models, despite the recent accomplishments of deep learning in many disciplines of natural language processing. The study's main question is if deep learning can help them improve their performance. Because of the scant contextual information that most posts offer, emotion analysis is still difficult. The suggested method can capture more emotion sematic than existing models by projecting emoticons and words into emoticon space, which improves the performance of emotion analysis. In a microblog setting, this aids in the detection of subjectivity, polarity, and emotion. It accomplishes this by utilizing hash tags to create three large emotion-labeled data sets that can be compared to various emotional orders. Then compare the results of a few words and character-based repetitive and convolutional neural networks to the results of a pack of words and latent semantic indexing models. Furthermore, the specifics examine the transferability of the most recent hidden state representations across distinct emotional classes and whether it is possible to construct a unified model for predicting each of them using a common representation. It's been shown that repetitive neural systems, especially character-based ones, outperform pack-of-words and latent semantic indexing models. The semantics of the token must be considered while classifying the tweet emotion. The semantics of the tokens recorded in the hash map may be simply searched. Despite these models' low exchange capacities, the recently presented training heuristic produces a unity model with execution comparable to the three solo models. Keywords: Hashtags, Sentiment Analysis, Facial Recognition, Emotions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.