Abstract
Happiness can be regarded as an evaluation of life satisfaction. A high level of wellbeing can promote self-fulfillment and build a rational, peaceful, self-esteem, self-confidence, and positive social mentality. Therefore, the analysis of the factors of happiness is of great significance for the continuous improvement of the individual’s sense of security and gain and the realization of the maximization of self-worth. Emotion is not only an important internal factor that affects happiness, but it can also accurately reflect the individual’s happiness. However, most of current happiness evaluation methods based on the emotional analysis belong to shallow learning paradigm, making the deep learning method unexploited for automatically happiness decoding. In this article, we analyzed the emotions of graduates during their employment and studied its influence on personal happiness at work. We proposed deep restricted Boltzmann machine (DRBM) for graduates’ happiness evaluation during employment. Furthermore, to mitigate the information loss when passing through many network layers, we introduced the skip connections to DRBM and proposed a deep residual RBM (DRRBM) for enhancing the valuable information. We further introduced an attention mechanism to DRRBM to focus on the important factors. To verify the effectiveness of the proposed method on the happiness evaluation tasks, we conducted extensive experiments on the statistical data of the China Comprehensive Social Survey (CGSS). Compared with the state-of-the-art methods, our method shows better performance, which proves the practicability and feasibility of our method for happiness evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.