Abstract
The automatic detection of emotions is a difficult task in Artificial Intelligence. In the field of Natural Language Processing, the challenge of automatically detecting emotion from text has been tackled from many perspectives. Nonetheless, the majority of the approaches contemplated only the word level. Due to the fact that emotion is most of the times not expressed through specific words, but by evoking situations that have a commonsense affective meaning, the performance of existing systems is low. This article presents the EmotiNet knowledge base – a resource for the detection of emotion from text based on commonsense knowledge on concepts, their interaction and their affective consequence. The core of the resource is built from a set of self-reported affective situations and extended with external sources of commonsense knowledge on emotion-triggering concepts. The results of the preliminary evaluations show that the approach is appropriate for capturing and storing the structure and the semantics of real situations and predict the emotional responses triggered by actions presented in text.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.