Abstract

The aim of the present study was to determine the effects of emodin, a natural compound with antioxidant properties, on oxidative stress and apoptosis induced by hypoxia/reoxygenation (H/R) in HK-2 human renal tubular cells. In HK-2 cells subjected to H/R, it was observed that pre-treatment with emodin lead to an increase in cellular viability and a reduction in the rate of apoptosis and the B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-2 ratio. H/R alone caused a significant increase in the levels of reactive oxygen species and malondialdehyde (P<0.05) and a significant decrease in the activities of superoxide dismutase, catalase and glutathione peroxidase (P<0.05), relative to normoxic cells. In turn, parameters of oxidative stress were improved by emodin pre-treatment. In addition, emodin pre-treatment significantly inhibited the phosphorylation of extracellular signal-regulated protein kinase and c-Jun N-terminal kinase mitogen-activated protein kinases (MAPKs) induced by H/R (P<0.05). These data suggest that emodin may prevent H/R-induced apoptosis in human renal tubular cells through the regulation of cellular oxidative stress, MAPK activation and restoration of the Bax/Bcl-2 ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call