Abstract

BackgroundEmodin has been proved to have an anti-ischemic effect on the brain, however little research has been done on its effect on vision-threatening retinal ischemia. Thus, an investigation was carried out into the hypothetical efficacy of emodin against retinal ischemia and the role of β-catenin/VEGF in its therapeutic mechanism.MethodsRetinal ischemia, followed by reperfusion (IR), was inducted by raising the intraocular pressure of a Wistar rat’s eye to 120 mmHg for 60 min. Additionally, pre-ischemic/post-ischemic intravitreous injections of emodin (4, 10 and 20 μM) or vehicle were carried out on the eye with retinal ischemia. MTT assay, electroretinograms, cresyl violet staining retinal thickness measurements, and fluorogold retrograde labelling of retinal ganglion cells (RGCs) as well as Western blotting were carried out.ResultsCultured RGC-5 cells subjected to oxygen glucose deprivation (OGD) were used to confirm the effective concentrations of emodin (administered 1 h pre-OGD, pre-OGD emodin). The most effective and significant (P = 0.04) dose of pre-OGD emodin was observed at 0.5 μM (cell viability: 47.52 ± 3.99%) as compared to pre-OGD vehicle treatment group (38.30 ± 2.51%). Furthermore, pre-ischemic intravitreous injection of 20 μM emodin (Emo20 + IR = 0.99 ± 0.18, P < 0.001) significantly attenuated the ischemia induced reduction in ERG b-wave amplitude, as compared to pre-ischemic intravitreous vehicle (Vehicle+IR = 0.04 ± 0.02). Post-ischemic intravitreous 20 μM emodin also significantly (P < 0.001) attenuated the ischemia associated b-wave reduction (IR + Em20 = 0.24 ± 0.09). Compared with pre-ischemic intravitreous vehicle (Vehicle+IR; whole retina thickness = 71.80 ± 1.08 μm; inner retina thickness = 20.97 ± 0.85 μm; RGC =2069.12 ± 212.82/0.17mm2), the significant (P < 0.001) protective effect was also present with pre-ischemic administration of emodin. This was shown by observing cresyl violet stained retinal thickness (Emo20 + IR: whole retina = 170.10 ± 0.10 μm; inner retina = 70.65 ± 2.06 μm) and retrograde fluorogold immunolabeled RGC density (4623.53 ± 179.48/0.17mm2). As compared to the normal control (the ratio of β-catenin/VEGF to β-actin was set as 1 in the Sham group), the β-catenin/VEGF protein level significantly (P < 0.001) increased after retinal ischemia and when pre-ischemic intravitreous vehicle (Vehicle+IR = 1.64 ± 0.14/7.67 ± 2.57) was carried out. However, these elevations were significantly (P = 0.02) attenuated by treatment with emodin 20 μM (Emo20 + IR = 1.00 ± 0.19/1.23 ± 0.44).ConclusionsThe present results suggest that emodin might protect against retinal ischemia insulted neurons such as RGCs by significantly downregulating the upregulation of β-catenin/VEGF protein that occurs during ischemia.

Highlights

  • Emodin has been proved to have an anti-ischemic effect on the brain, little research has been done on its effect on vision-threatening retinal ischemia

  • The present results suggest that emodin might protect against retinal ischemia insulted neurons such as Retinal ganglion cells (RGC) by significantly downregulating the upregulation of β-catenin/Vascular endothelium factor (VEGF) protein that occurs during ischemia

  • Cells were incubated in culture medium plus one hour of pre-oxygen glucose deprivation (OGD) administration of: vehicle, emodin 0.25 μM and emodin 0.5 μM

Read more

Summary

Introduction

Emodin has been proved to have an anti-ischemic effect on the brain, little research has been done on its effect on vision-threatening retinal ischemia. Retinal ischemia is detected when there are alterations in the bwave of the electroretinogram (ERG), the presence of optical coherence tomography-proved retinal thinning, and/or alterations in visual field due to the death of inner retinal neurons (e.g. retinal ganglion cells, RGCs) [1]. These diseases affect millions of people worldwide, and the management of retina ischemia is very important. A model involving the induction of retinal ischemia was established that involved increasing intraocular pressure (IOP) Using this approach, an investigation into novel therapeutic approaches related to various signalling pathways would be a useful way to finding an appropriate agent against retinal ischemia. The inhibition of protein expression of β-catenin and/or VEGF have been reported to prevent an ischemia induced increase in vascular permeability that is related to consequential neovascularization, ocular hemorrhage and/or cystoid macular edema) [7,8,9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call