Abstract
Aggregation of amyloid-β peptide 1-42 (Aβ42) initiates the onset of Alzheimer's disease (AD), and all the drugs designed to attenuate AD have failed in clinical trials. Emodin reduces levels of β-amyloid, tau aggregation, oxidative stress, and inflammatory response, demonstrating AD therapeutic potential, whereas its effect on the accumulation of the amyloid-β protein is not well understood. In this work, we investigated emodin activity on Aβ aggregation using a range of biochemical, biophysical, and cell-based approaches. We provide evidence to suggest that emodin blocks Aβ42 fibrillogenesis and Aβ-induced cytotoxicity, displaying a greater effect than that of curcumin. Through adopting three short peptides (Aβ1-16, Aβ17-33, and Aβ28-42), it was proven that emodin interacts with the Leu17-Gly33 sequence. Furthermore, our findings indicated that Val18 and Phe19 in Aβ42 are the target residues with which emodin interacts according amino acid mutation experiments. When fed to 8-month-old B6C3-Tg mice for 2months, high-dose emodin ameliorates cognitive impairment by 60%-70%. Pathological results revealed that levels of Aβ deposition in the brains of AD mice treated with a high dose of emodin decreased by 50%-70%. Therefore, our study indicates that emodin may represent a promising drug for AD treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.