Abstract

Emodin is a natural anthraquinone compound, which is the main component found in the traditional Chinese herb Polygonum cuspidatum. The anti-fibrosis effects of Emodin have been reported. This study aimed to explore the specific mechanism of Emodin in the epithelial-mesenchymal transition (EMT) of pulmonary fibrosis. The pulmonary fibrosis mice models were constructed with bleomycin, the EMT models of alveolar epithelial cells were stimulated by TGF-β1, and Emodin was used for intervention. c-MYC and miR-182-5p were overexpressed or silenced by cell transfection. Our results demonstrated that Emodin attenuated pulmonary fibrosis induced by bleomycin in mice, and inhibited EMT, meanwhile downregulated c-MYC, upregulated miR-182-5p, and downregulated ZEB2 in vitro and vivo. Next, overexpression of c-MYC promoted EMT, while silencing c-MYC and overexpressing miR-182-5p inhibited EMT. Then, c-MYC negatively regulated the expression of miR-182-5p with a direct binding relationship. And miR-182-5p inhibited ZEB2 expression in a targeted manner. Finally, Emodin inhibited EMT that had been promoted by overexpression of c-MYC. In conclusion, Emodin could attenuate pulmonary fibrosis and EMT by regulating the c-MYC/miR-182-5p/ZEB2 axis, which might provide evidence for the application of Emodin in the treatment of pulmonary fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call