Abstract

Polycystic ovary syndrome (PCOS) is a reproductive disorder with an unclear etiology. It affects 5-10% of women worldwide and is largely associated with impaired glucose metabolism and obesity. High mobility group box 1 (HMGB1) is a nuclear protein associated with impaired glucose metabolism and PCOS. We sought to investigate the potential therapeutic effects of emodin on glucose metabolism and ovarian functions in PCOS mice via the HMGB1 molecular pathway. A high-fat diet (HFD) and dehydroepiandrosterone (DHEA) induced PCOS mouse model comprising four experimental groups was established: control, PCOS, PCOS plus emodin, and PCOS plus vehicle groups. Emodin administration attenuated obesity, elevated fasting glucose levels, impaired glucose tolerance, and insulin resistance, and improved the polycystic ovarian morphology of PCOS mice. Additionally, it lowered elevated serum HMGB1, LH, and testosterone levels in PCOS mice. Elevated ovarian protein and mRNA levels of HMGB1 and TLR4 in PCOS mice were also lowered following emodin treatment. Furthermore, emodin lowered high NF-ĸB/65 protein levels in the ovaries of PCOS mice. Immunohistochemical staining of the ovaries revealed strong HMGB1, TLR4, and AR expressions in PCOS mice, which were lowered by emodin treatment. Moreover, emodin significantly increased GLUT4, Irs2, and Insr levels that were PCOS. Overall, our study showed that emodin alleviated the impaired glucose metabolism and improved ovarian function in PCOS mice, possibly via the HMGB1/TLR4/NF-ĸB signaling pathway. Thus, emodin could be considered a potential therapeutic agent in the management of PCOS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.