Abstract

Excess activation of cardiac fibroblasts inevitably induces cardiac fibrosis. Emodin has been used as a natural medicine against several chronic diseases. The objective of this study is to determine the effects of emodin on cardiac fibrosis and the underlying molecular mechanisms. Intragastric administration of emodin markedly decreased left ventricular wall thickness in a mouse model of pathological cardiac hypertrophy with excess fibrosis induced by transaortic constriction (TAC) and suppressed activation of cardiac fibroblasts induced by angiotensin II (AngII). Emodin upregulated expression of metastasis associated protein 3 (MTA3) and restored the MTA3 expression in the setting of cardiac fibrosis. Moreover, overexpression of MTA3 promoted cardiac fibrosis; in contrast, silence of MTA3 abrogated the inhibitory effect of emodin on fibroblast activation. Our findings unraveled the potential of emodin to alleviate cardiac fibrosis via upregulating MTA3 and highlight the regulatory role of MTA3 in the development of cardiac fibrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.