Abstract

The high-affinity receptor for IgE (FcɛRI)-mediated activation of mast cells plays an important role in allergic diseases such as asthma, allergic rhinitis and atopic dermatitis. Emodin, a naturally occurring anthraquinone derivative in oriental herbal medicines, has several beneficial pharmacologic effects, such as anti-cancer and anti-diabetic activities. However, the anti-allergic effect of emodin has not yet been investigated. To assess the anti-allergic activity of emodin, in vivo passive anaphylaxis animal model and in vitro mouse bone marrow-derived mast cells were used to investigate the mechanism of its action on mast cells. Our results showed that emodin inhibited degranulation, generation of eicosanoids (prostaglandin D 2 and leukotriene C 4), and secretion of cytokines (TNF-α and IL-6) in a dose-dependent manner in IgE/Ag-stimulated mast cells. Biochemical analysis of the FcɛRI-mediated signaling pathways demonstrated that emodin inhibited the phosphorylation of Syk and multiple downstream signaling processes including mobilization of intracellular Ca 2+ and activation of the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and NF-κB pathways. When administered orally, emodin attenuated the mast cell-dependent passive anaphylactic reaction in IgE-sensitized mice. Thus, emodin inhibits mast cell activation and thereby the anaphylactic reaction through suppression of the receptor-proximal Syk-dependent signaling pathways. Therefore, emodin might provide a basis for development of a novel anti-allergic drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.