Abstract

Emodin (Emo) is a natural plant anthraquinone derivative with a wide spectrum of pharmacological properties, including anticancer, antioxidant, and hepatoprotective activities. Glycosylation of natural anthraquinones with various sugar moieties can affect their physical, chemical, and biological functions. In this study, the potential immunomodulatory activities of Emo and its glycosylated derivative, emodin 8-O-glucoside (E8G), were evaluated and compared using murine macrophage RAW264.7 cells and human monocytic THP-1 cells. The results showed that E8G (20 μM) induced the secretion of TNF-α and IL-6 from RAW264.7 cells more effectively than unglycosylated Emo aglycone, by 4.9- and 1.6-fold, respectively, with no significant cytotoxicity in the concentration range tested (up to 20 μM). E8G (2.5–20 μM) significantly and dose-dependently induced inducible nitric oxide synthase (iNOS) expression by up to 3.2-fold compared to that of untreated control following a remarkable increase in nitric oxide (NO) production. E8G also significantly increased the expression of TLR-2 mRNA and the phosphorylation of MAPKs (JNK and p38). The activation and subsequent nuclear translocation of NF-κB was substantially enhanced upon treatment with E8G (2.5–20 μM). Moreover, E8G markedly induced macrophage-mediated phagocytosis of apoptotic Jurkat T cells. These results demonstrated that E8G far more strongly stimulates the secretion of proinflammatory cytokines, such as TNF-α and IL-6, and NO production from macrophages through upregulation of the TLR-2/MAPK/NF-κB signalling pathway than its nonglycosylated form, Emo aglycone. These results suggest for the first time that E8G may represent a novel immunomodulator, enhancing the early innate immunity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.