Abstract

N-linked glycosylation is a frequently occurring post-translational protein modification that serves critical functions in protein folding, stability, trafficking, and recognition. Its involvement spans across multiple biological processes and alterations to this process can result in various diseases. Therefore, identifying N-linked glycosylation sites is imperative for comprehending the mechanisms and systems underlying glycosylation. Due to the inherent experimental complexities, machine learning and deep learning have become indispensable tools for predicting these sites. In this context, a new approach called EMNGly has been proposed. The EMNGly approach utilizes pretrained protein language model (Evolutionary Scale Modeling) and pretrained protein structure model (Inverse Folding Model) for features extraction and support vector machine for classification. Ten-fold cross-validation and independent tests show that this approach has outperformed existing techniques. And it achieves Matthews Correlation Coefficient, sensitivity, specificity, and accuracy of 0.8282, 0.9343, 0.8934, and 0.9143, respectively on a benchmark independent test set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.