Abstract

The study of folding and conformational changes of macromolecules by molecular dynamics simulations often requires the generation of large amounts of simulation data that are difficult to analyze. Markov (state) models (MSMs) address this challenge by providing a systematic way to decompose the state space of the molecular system into substates and to estimate a transition matrix containing the transition probabilities between these substates. This transition matrix can be analyzed to reveal the metastable, i.e., long-living, states of the system, its slowest relaxation time scales, and transition pathways and rates, e.g., from unfolded to folded, or from dissociated to bound states. Markov models can also be used to calculate spectroscopic data and thus serve as a way to reconcile experimental and simulation data. To reduce the technical burden of constructing, validating, and analyzing such MSMs, we provide the software framework EMMA that is freely available at https://simtk.org/home/emma .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.