Abstract

The echinoderm microtubule-associated protein like 4-anaplastic lymphoma kinase (EML4-ALK) fusion represents a novel target in a subset of non-small cell lung cancer, especially adenocarcinoma. EML4-ALK fusion is mutually exclusive with epidermal growth factor receptor (EGFR) mutations. To understand the impact of EML4-ALK on the prognosis of non-small cell lung cancer, we examined EML4-ALK fusion in lung adenocarcinoma from patients with wild-type EGFR and analyzed their clinical treatment outcomes. Lung adenocarcinoma patients with malignant pleural effusions having wild-type EGFR and measurable target lesions were enrolled for EML4-ALK analysis by reverse transcription-polymerase chain reaction and direct sequencing. Demographic data, EML4-ALK status, and survival data were analyzed. We also performed fluorescence in situ hybridization on some available tumor samples to validate the PCR result. In addition, K-ras mutation was analyzed for patients without EML4-ALK fusion genes. A total of 116 patients with wild-type EGFR sequencing results had complete clinical data for analysis. No patients received ALK inhibitor therapy. There were 39 patients (34%) with the EML4-ALK fusion gene. The concordance rate between reverse transcription-polymerase chain reaction and fluorescence in situ hybridization was 85%. The K-ras mutation rate for patients without EML4-ALK fusion gene was 6.5%. By multivariate analysis, patients who had better performance status (p < 0.001) and EML4-ALK translocation (p = 0.017) had longer overall survival. Comparing patients with tumors harboring variant 1 with those harboring nonvariant 1 EML4-ALK fusion genes, there were no significant differences in clinical factors and survival outcome. For lung adenocarcinoma patients with wild-type EGFR, EML4-ALK translocation is associated with longer overall survival.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.