Abstract

We use the single-particle radial equation of motion to identify nonlinear forces which lead to an emittance growth in a focusing channel consisting of solenoids. For a uniform density beam, the two dominant effects are the axial velocity variations within a solenoid due to the particles' azimuthal velocity and changes in the particle's energy due to radial motion and the radial electric space-charge field. We derive estimates for the emittance growth for a space-charge dominated beam due to these effects, both for the case of a hard focus to a small beam waist and for the case where there is gentle beam scalloping. We also briefly catalog less important emittance growth mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.