Abstract

In spite of the successful enhancement of the power‐conversion efficiency (PCE) in organic bulk heterojunction (BHJ) solar cells by surface plasmon resonance (SPR), the incorporation of several tens of nanometer‐sized (25–50 nm) metal nanoparticles (NPs) has some limitations to further enhancing the PCE due to concerns related to possibly transferring nonradiative energy and disturbing the interface morphology. Instead of tens of nanometer‐sized metal NPs, here, dodecanethiol stabilized Au nanoclusters (Au:SR, R = the tail of thiolate) with sub‐nm‐sized Au38 cores are incorporated on inverted BHJ solar cells. Although metal NPs less than 5 nm in size do not show any scattering or electric field enhancement of incident light by SPR effects, the incorporation of emissive Au:SR nanoclusters provides effects that are quite similar to those of tens of nanometer‐sized plasmonic metal NPs. Due to effective energy transfer, based on the protoplasmonic fluorescence of Au:SR, the highest performing solar cells fabricated with Au:SR clusters yield a PCE of 9.15%; this value represents an ≈20% increase in the efficiency compared to solar cells without Au:SR nanoclusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call