Abstract

The large amounts of emissions released by forest fires have a significant impact on the atmospheric environment, ecosystems, and human health. Revealing the main components of emissions released by forest fuel under different combustion states is of great importance to evaluate the impact of forest fires on the ecological environment. Here, a self-designed biomass combustion system was used to simulate the combustion of different parts (i.e., branch, trunk, and bark) of five tree species and branches, and three layers of surface dead fuel (i.e., litter layer, semi-humus layer, and humus layer) of three shrub species, in the Daxing’an Mountains, Inner Mongolia. The emission characteristics of the main gas pollutants (i.e., CO, CO2, HC, and NOx) and PM2.5 released under the two combustion states of smoldering and flaming, along with the correlation ratio among emission factors, were measured. The results show that the average amounts of emissions released by different trees and the three layers of surface dead fuel from a smoldering state are higher than those from the flaming state, while shrub combustion shows the opposite. The emissions released by trees, shrubs, and surface dead fuel from the flaming state are ordered from high to low as follows: CO2 > CO > HC > NOx > PM2.5; and from the smoldering state as CO2 > CO > HC > PM2.5 > NOx, indicating that the primary emissions under both conditions are mainly due to CO2, CO, and HC, while the emissions of NOx and PM2.5 are dependent on the combustion state—flaming promotes the emission of NOx, while smoldering promotes the emission of PM2.5. The average emissions of PM2.5 from the branches, bark, and trunks of Quercus mongolica are significantly higher than those of the other four tree species in the smoldering state, and the emissions of PM2.5 from the five tree species are ordered as follows: bark > branch > trunk. This study will help to further understand the impact of forest fires on the atmospheric environment and ecosystems in Northern China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.