Abstract

Single injector, high pressure, rig evaluation of the prototype Parker macrolaminate dual fuel premixer (previously tested at NETL, see Mansour et al., 2001) [1] with pressure swirl macrolaminate atomizers was conducted under simulated engine operating conditions running on No. 2 diesel fuel (DF2). Emissions, oscillations and lean blowout (LBO) performance on liquid fuel at high, part and no load operating points (pressures of 160, 100, 120 psig, and inlet temperatures of 690, 570, 590°F, respectively) and various pressure drops (ΔP/P) and air fuel ratio conditions were investigated. The results indicate that the Parker premixer design has the potential to reduce the DF2 NOX emission to below 15 ppmv, 15% O2. At simulated high load conditions with a nominal flame temperature (TPZ) of 2700°F, the NOX and CO emissions are approximately 10 and 2.5 ppmv at 15% O2, respectively. These results compare extremely favorable to existing commercially available premixer technologies tested under similar rig operating conditions. More importantly, the NOX yield for the Parker Macrolaminate premixer appears to be independent of operating conditions (from high to no load and various pressure drop conditions). Variations in combustor pressure, inlet temperature (T2) and residence time (τ) or pressure drop (ΔP/P) does not seem to have an effect on the formation of NOX. According to Leonard and Stegmaier (1993) [2], insensitivity of NOX formation to operating conditions is a good indication of high degree of premixing. Additionally, the premixer NOX data is only 1 to 2 ppmv higher than the jet stirred reactor (JSR) results (ran at T2 = 661°F, PCD = 14.7 psi and TPZ = 2762°F with similar DF2) of Lee et al., 2001 [3], further confirming the quality of premixing achieved. Combustion driven oscillations was not investigated by tuning the rig so that oscillations would not be a factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.