Abstract

Sulfur hexafluoride (SF6) is the most potent non-CO2 Greenhouse Gas currently incorporated in the Paris Agreement, with a global warming potential of around 25,000 over a 100-year time horizon and lifetime of around 1,000 years. Global mole fractions and emissions of SF6 have increased substantially since the 2000s. The increasing SF6 emissions worldwide are thought to originate from its growing emissions in Kyoto Protocol non-Annex-I countries, where China is a major contributor. Top-down emission estimates provide evaluation of national bottom-up inventories, based on information from atmospheric observations. Previous top-down emissions of SF6 in China were determined by observations made outside of China (e.g., in Korea and Japan), which lack sensitivity to emissions in regions far from the measurement sites (like the western or southern parts of China). In this study, emissions of SF6 in China over 2011-2020 were derived using observations of SF6 from 9 sites within China, coupled with a Lagrangian transport model and a hierarchical Bayesian inference algorithm. Analysis of the sensitivity maps (footprints) of these measurement sites suggest broad sensitivity to the major emission areas in China. The emissions in China show a substantial increase throughout the study period and contribute substantially to the rise in global emissions. The spatial distribution of SF6 emissions in different regions or provinces in China and their changes are further analyzed. Finally, the potential industrial drivers behind the changes in emissions in China, and the necessity of continuous atmospheric observations in some key regions like in the northwest of China are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.