Ecological Engineering | VOL. 25

Emissions of greenhouse gases from ponds constructed for nitrogen removal

Publication Date Dec 1, 2005


Methane and carbon dioxide emission from three constructed ponds were monitored during an annual cycle. Water temperature was a good predictor of methane emission in all three ponds. In the most intensively studied pond, nitrate concentration in the bottom water could further explain the amount of methane emitted. When water temperature exceeded 15 °C between 1 and 54 mg, CH4 m−2 h−1 was emitted on all occasions, while at temperatures below 10 °C, less than 0.6 mg CH4 m−2 h−1 was emitted. The flux of carbon dioxide differed between the ponds and no consistent patterns were found. In a laboratory study at 20 °C, we showed that high, but naturally occurring, nitrate concentrations (8 and 16 mg NO3−–N l−1) constrained the production of methane compared to the treatment with no nitrate addition. Nitrous oxide production was positively correlated with nitrate concentration. Carbon dioxide production was highest at the highest nitrate concentration, which indicates that increased nitrate loading on ponds and wetlands will stimulate organic matter decomposition rates. Our conclusion is that these ponds constructed for nitrate removal emit greenhouse gases comparable to lakes in the temperate region.


Nitrate Concentration Highest Nitrate Concentration Carbon Dioxide Production Emissions Of Greenhouse Gases Carbon Dioxide Nitrate Addition Nitrous Oxide Production Methane Emission Nitrate Concentration In Water Bottom Water

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Nov 21, 2022 to Nov 27, 2022

R DiscoveryNov 28, 2022
R DiscoveryArticles Included:  2

No potential conflict of interest was reported by the authors. The conception and design of the study, acquisition of data, analysis and interpretatio...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.