Frontiers in Environmental Science | VOL. 9
Read

Emissions of CO2, N2O and CH4 From Cultivated and Set Aside Drained Peatland in Central Sweden

Publication Date Mar 5, 2021

Abstract

Northern peatlands are important carbon (C) reservoirs, storing about one-third of the global terrestrial soil C pool. Anthropogenic influences, such as drainage for agriculture and forestry, lower the originally high groundwater level, leading to peat aeration and decomposition. This is particularly reflected in significant losses of CO2, while fluxes of N2O and CH4 are generally considered of minor importance for the overall greenhouse gas (GHG) balance of cultivated peatlands in Scandinavia. Setting land aside from agricultural production has been proposed as a strategy to reduce GHG emissions from drained peatland, restore natural habitats, and increase C sequestration. However, the evidence for this is rather scarce unless drainage is terminated. In this study, we measured respiration using dark automatic chambers, and CO2, N2O, and CH4 fluxes using manual static chambers, on: 1) cultivated peatland and 2) adjacent set-aside peatland in Central Sweden. The set-aside site was found to be a greater source of respiration than the cultivated site, while higher N2O fluxes and lower CH4 uptake rates were observed for the cultivated site. However, to compare the full GHG balance and assess the abandonment of drained cultivated peatland, additional measures, such as gross primary production (GPP) but also dissolved organic C losses would have to be taken into account.

Concepts
Powered ByUnsilo

Cultivated Peatland
Manual Static Chambers
Central Sweden
Higher N2O Fluxes
Greenhouse Gas Balance
Greenhouse Gas
N2O Fluxes
Drainage For Agriculture
Cultivated Site
CH4 Fluxes

Introducing Weekly Round-ups!Beta

Powered by R DiscoveryR Discovery

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between May 09, 2022 to May 15, 2022

R DiscoveryMay 16, 2022
R DiscoveryArticles Included:  2

Introduction: Climate change is a pervasive threat to global biodiversity and is expected to have profound effects on the resilience and abundance of ...

Read More

Climate change Research Articles published between May 02, 2022 to May 08, 2022

R DiscoveryMay 09, 2022
R DiscoveryArticles Included:  2

We studied the fungal DNA present in a lake sediment core obtained from Trinity Peninsula, Hope Bay, north-eastern Antarctic Peninsula, using metabarc...

Read More

Climate change Research Articles published between Apr 25, 2022 to May 01, 2022

R DiscoveryMay 02, 2022
R DiscoveryArticles Included:  5

Introduction: Climate change and flooding events in South Ontario Climate change is altering climate patterns and adding pressure to climate systems a...

Read More

Climate change Research Articles published between Apr 18, 2022 to Apr 24, 2022

R DiscoveryApr 25, 2022
R DiscoveryArticles Included:  5

Introduction: Climate change triggers stark effects on species geographic ranges, leading to range shifts and disruptions in the functioning of ecosys...

Read More

Good health Research Articles published between Apr 18, 2022 to Apr 24, 2022

R DiscoveryApr 25, 2022
R DiscoveryArticles Included:  4

This study reviews the contributions made by each article in the theme issue with reference to case study examples of contemporary corporate social re...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard