Abstract

The decomposition of deadwood plays a very important role in the functioning of the forest ecosystem. The present study was conducted with the objectives to: (1) determine the amount of deadwood respiration depending on species and degree of decomposition; (2) determine the extent of the impact of decomposing wood on the amount of respiration in surrounding soil; (3) find a relationship between the amount of respiration and the chemical fractional composition of soil organic matter. Our research has shown that respiration of decaying wood samples was 2-3 times lower compared to soil, regardless of the type of wood and the degree of wood decomposition. The conducted analyses confirmed the influence of the species of wood and the degree of decomposition on the respiration rate in wood samples. More decomposed wood (4th and 5th degree of decomposition) releases more CO2 compared to less decomposed wood and the highest CO2 emissions were recorded for aspen and alder wood. Better understanding of the mechanisms and factors affecting CO2 emissions in forest ecosystem can help reduce climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call