Abstract

A laboratory investigation was performed on the emissions from the batch combustion of waste tire chips in fixed beds. Techniques and conditions that minimize toxic emissions were identified. Tire-derived fuel (TDF), in the form of waste tire chips (1 cm in size), was burned in a two-stage combustor. Batches of tire chips were introduced to the primary furnace, where gasification and combustion occurred. The gaseous effluent of this furnace was mixed with streams of additional preheated air in a mixing venturi, and it was then passed through a silicon carbide (SiC) honeycomb wall-flow filter that had been placed inside this furnace. Subsequently, it was channeled into a secondary furnace (afterburner), where further oxidation occurred. The arrangement of the two furnaces in series allowed for independent temperature control; varying the temperature in the primary furnace influenced the type and the flux of pyrolysates. The hot-flue-gas filtering section, ahead of the exit of the primary furnace, allowed the retention and further oxidation of most of the generated particulates and, thus, prevented them from entering the afterburner. Results showed that the combination of the high-temperature ceramic filter with the afterburner treatment was successful in reducing the emissions from the combustion of waste tires. Depending on the temperature of the primary furnace, the final emissions of CO were reduced by factors of 2−6, NOx emissions were reduced by factors of 2−3, particulate emissions were reduced by 2 orders of magnitude (both PM2.5 and PM10), and most individual polycyclic aromatic hydrocarbon (PAH) species emissions were reduced by more than 1 order of magnitude, with the exception of naphthalene, whose reduction was less drastic. The overall combustion effectiveness was enhanced, as evidenced by higher CO2 yields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call