Abstract

With emission control regulations getting stricter, multi-functional catalyst systems are increasingly important for low-temperature operation. We investigate a wide range of multi-component catalyst systems, as physical mixtures and in multi-bed configurations, while varying the ratios of hydrocarbon traps (HCT), passive NOx adsorbers (PNAs), and diesel oxidation catalysts (DOC). Using industrially guided protocols, we measured the ability of these complex catalyst systems to reduce emissions during a 40 °C/min temperature ramp to simulate cold-start conditions. Using a temperature boundary condition of 250 °C, the average conversion was calculated for each regulated pollutant: CO, NOx, and total hydrocarbons (THC). An emissions merit function was developed to evaluate the effectiveness of each system relative to the relevant emission standards and expected engine exhaust concentrations. This merit function identified that a 1:1:4 ratio of PNA:HCT:DOC was the most effective emissions reduction configuration and had similar reactivity as a physical mixture or as a PNA→HCT→DOC multi-bed reactor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.