Abstract

Recent inventory efforts have focused on developing nonroad inventories for emissions modeling and policy insights. Characterizing these inventories geographically and explicitly treating the uncertaintiesthat result from limited emissions testing, incomplete activity and usage data, and other important input parameters currently pose the largest methodological challenges. This paper presents a commercial marine vessel (CMV) emissions inventory for Washington and Oregon using detailed statistics regarding fuel consumption, vessel movements, and cargo volumes for the Columbia and Snake River systems. The inventory estimates emissions for oxides of nitrogen (NOx), particulate matter (PM), and oxides of sulfur (SOx). This analysis estimates that annual NOx emissions from marine transportation in the Columbia and Snake River systems in Washington and Oregon equal 6900 t of NOx (as NO2) per year, 2.6 times greater than previous NO, inventories for this region. Statewide CMV NO, emissions are estimated to be 9,800 t of NOx per year. By relying on a "bottom-up" fuel consumption model that includes vessel characteristics and transit information, the river system inventory may be more accurate than previous estimates. This inventory provides modelers with bounded parametric inputs for sensitivity analysis in pollution modeling. The ability to parametrically model the uncertainty in commercial marine vessel inventories also will help policy-makers determine whether better policy decisions can be enabled through further vessel testing and improved inventory resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.