Abstract
The impacts of air conditioning and refrigeration systems on stratospheric ozone are primarily linked to release of ozone-depleting refrigerants. Their contributions to global warming stem both from release of refrigerants and from emission of greenhouse gases (GHGs) for associated energy use. Because the energy-related component has a significantly higher warming impact, phaseout of hydrofluorocarbon (HFC) refrigerants with less efficient options will increase net GHG emissions. The same conclusion applies for perfluorocarbon (PFCs), though they are less commonly used as refrigerants. Integrated assessment of ozone depletion, global warming, and atmospheric lifetime provides essential indications in the absence of ideal refrigerants, namely those free of these problems as well as safety, stability, compatibility, cost, and similar burdens. This study examines the trend in refrigerant losses from chiller use. It documents both substantial progress in release reductions and the technical innovations to achieve them. It contrasts the impacts of current refrigerants with alternatives and with the chlorofluorocarbons (CFCs) they replaced. The study examines the sensitivity of efficiency to charge loss. It also summarizes thermodynamic and environmental comparisons of options to show that phaseout decisions based on chemical composition alone, without regard to attributes of individual substances, can result in greater environmental harm than benefit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.