Abstract

The internal quantum efficiency (IQE) of InGaN nanowires with different emission wavelength of 485, 515, 555, and 580 nm has been studied by means of photoluminescence (PL) spectroscopy. It was found from the analysis of IQE as a function of excitation power density that the IQE was unchanged at about 100% under weak excitation conditions at low temperature. This indicated that the effects of nonradiative recombination processes were negligibly small at low temperature. Moreover, the IQE increased from 5 to 12% with increasing emission wavelength from 485 to 580 nm. Since the clear correlation between the IQE and the PL blue shift due to band filling effects of localized states was observed, the increase in the IQE reflected the increase in the effect of exciton localization with increasing indium composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.