Abstract

Here, we report a series of Bi3+-doped Ba2Y1–xScxNbO6 (0 ≤ x ≤ 1.0 mol) phosphors by using the traditional high temperature solid-state reaction. To achieve the structural and photoluminescent (PL) information, several experimental characterizations and theoretical calculations were carried out, including X-ray diffraction (XRD), Rietveld refinement, UV-visible diffuse reflectance and PL spectra, temperature dependent PL spectra, and density functional theoretical (DFT) calculations. The XRD results show that the Bi3+-doped Ba2Y1–xScxNbO6 samples belong to the double-perovskite phase with a cubic space group of Fm3̅m, and the diffraction positions shift toward high diffraction angle when the larger Y3+ ions are gradually replaced by the smaller Sc3+ ions. In addition, the refined XRD findings show that the Bi3+ ions tend to substitute the Y3+ and Sc3+ sites in the Bi3+-doped Ba2Y1–xScxNbO6 (0 <x < 1.0 mol) solid solutions. The PL spectra show that the emission positions of the solid solution samples tune from 446 to 497 nm with the increase of Sc3+ content, which can be attributed to the modification of crystal field strength around Bi3+ ions. Moreover, there is energy transfer from the Ba2YNbO6 host to Bi3+ ions, which is dominated by a resonant type via a dipole-quadrupole (d-q) interaction. The Ba2Y0.6Sc0.4NbO6:0.02 molBi3+ shows the strongest PL intensity under 365 nm excitation, with the best quantum efficiency (QE) of 68%, and it keeps 60% of the room temperature emission intensity when the temperature increases to 150 °C, meaning that the Ba2Y0.6Sc0.4NbO6:Bi3+ features excellent thermal quenching of luminescence. By combining this optimal sample with a commercial red-emitting Sr2Si5N8:Eu2+ phosphor, and a commercial 365 nm UV LED chip, a white LED device, with the color temperature (CT) of 3678 K, color rendering index (CRI) of 67.9, and CIE coordinates at (0.371, 0.376), is achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call