Abstract

The method of time-resolved emission spectroscopy was used to investigate the radiation emitted by a carbon plasma plume formed as a result of vacuum ablation of graphite by pulsed CO2 laser radiation. The spectrum of the radiation changed drastically in the course of emission from the plasma. The spectrum revealed successive appearance of various luminescence components contributed by C+ ions, C2 radicals, and microparticles. This spectrum differed considerably from that observed for a plasma formed by ablation with an XeCl laser, mainly because of the difference between the laser radiation wavelengths. Under certain conditions it was found that additional heating with CO2 laser radiation of a plasma formed by ablation of graphite with XeCl laser radiation altered greatly the emission spectrum. The changes indicated a higher degree of particle atomisation and a higher proportion of ions in such a plasma, compared with the plasma produced by one laser.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.