Abstract
Emission reduction of PM10 (of an aerodynamic diameter of 10 μm or less) was investigated via the combustion of biochar pre-treated from straw by torrefaction at 300 °C (T-300), slow pyrolysis at 500 °C (S-500), or hydrothermal carbonisation at 240 °C (H-240), and their co-combustion with Ping Ding Shan (PDS) bituminous coal in a drop tube furnace at 1400 °C. The generated PM10 was collected by a Dekati low pressure impactor (DLPI) sample system, and its mass/chemical composition was characterised. During single combustion of the straw and its pre-treated biochar, the emission amount of PM0.3 (aerodynamic diameter of ≤0.3 μm) from the biochar was linearly affected by the release of Cl during various pre-treatments and the formed KCl release into the gas phase during combustion. The emission of PM1-10 still changed linearly, mainly because of the increased ash content after pre-treatment. Co-combustion of biomass fuels and PDS coal presents an obvious reduction in PM10 emission, particularly PM0.3. The higher Cl content in biomass fuels is also linearly correlated with a greater reduction in PM0.3 emission. Aluminosilicates in coal, e.g. kaolinite, are responsible for the capture of gaseous species from biofuels and the subsequent coalescence of sticky minerals, reducing PM0.3 and PM1-10 emissions following co-combustion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.