Abstract

Mobile observation has been widely used in the monitoring of air pollution. However, studies on pollution sources and emission characteristics based on mobile navigational observation are rarely reported in the literature. A method for quantitative source analysis for industrial air pollutant emissions based on mobile observations is introduced in this paper. NOx pollution identified in mobile observations is used as an example of the development of the method. A dispersion modeling scheme that fine-tuned the meteorological parameters according to the actual meteorological conditions was adopted to minimize the impact of uncertainties in meteorological conditions on the accuracy of small-scale dispersion modeling. The matching degree between simulated and observed concentrations was effectively improved through this optimization search. In response to the efficiency requirements of source resolution for multiple sources, a random search algorithm was first used to generate candidate solution samples, and then the solution samples were evaluated and optimized. Meanwhile, the new index Smatch was established to evaluate the quality of candidate samples, considering both numerical error and spatial distribution error of concentration, in order to address the non-uniqueness of the solution in the multi-source problem. Then, the necessity of considering the spatial distribution error of concentration is analyzed with the case study. The average values of NOx emission rates for the two study cases were calculated as 69.8 g/s and 70.8 g/s. The Smatch scores were 0.92–0.97 and 0.92–0.99. The results were close to the online monitoring data, and this kind of pollutant emission monitoring based on the mobile observation experiment was initially considered feasible. Additional analysis and clarifications were provided in the discussion section on the impact of uncertainties in meteorological conditions, the establishment of a priori emission inventories, and the interpretation of inverse calculation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.