Abstract

This review addresses ongoing discussions involving nanolaser experiments, particularly those related to thresholdless lasing or few-emitter devices. A quantum-optical (quantum-mechanical active medium and radiation field) theory is used to examine the emission properties of nanolasers under different experimental configurations. The active medium is treated as inhomogeneously broadened semiconductor quantum dots embedded in a quantum well, where carriers are introduced via current injection. Comparisons are made between a conventional laser and a nanolaser with a spontaneous emission factor of unity, as well as a laser with only a few quantum dots providing the gain. It is found that the combined exploration of intensity, coherence time, photon autocorrelation function and carrier spectral hole burning can provide a unique and consistent picture of nanolasers in the new regimes of laser operation during the transition from thermal to coherent emission. Furthermore, by reducing the number of quantum dots in the optical cavity, a clear indication of non-classical photon statistics is observed before the single-quantum-dot limit is reached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.