Abstract

A theoretical description for a single quantum-dot emitter in a microcavity is developed.We analyze for increasing steady-state pump rate the transition from the strong-coupling regime with photon antibunching to the weak-coupling regime with coherent emission. It is demonstrated how Coulomb interaction of excited carriers and excitation-induced dephasing can strongly modify the emission properties. Our theoretical investigations are based on a direct solution of the Liouville-von Neumann equation for the coupled carrier-photon system. We include multiple carrier excitations in the quantum dot, their Coulomb interaction, as well as excitation-induced dephasing and screening. Similarities and differences to atomic systems are discussed and results in the regime of recent experiments are interpreted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call