Abstract

ABSTRACTPhotoluminescence (PL) of undoped and Sm-doped TiO2, ZrO2and HfO2thin films and fibers was investigated at temperatures ranging from 6 to 300 K. The thin films were grown by the atomic layer deposition (ALD) technique and doped by using the ion implantation method. The fibers were prepared by using the sol-gel method whereas anin-situdoping was used to obtain the required concentration of Sm3+ions in the films. In undoped as well as doped materials, PL was efficiently excited via band-to-band transitions. The emission of undoped materials was attributed to the radiative recombination of self-trapped excitons (STE). In doped materials, intense emission of Sm3+was recorded. It is proposed, that there exists a concurrence between the radiative recombination of bound excitonic states and the energy transfer to Sm3+ions, particularly at lower temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.