Abstract

Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NOx) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 ± 17 kg CO2 ton−1, 88 ± 36 g CH4 ton−1, and 69 ± 16 g N2O ton−1, while those for CSW incineration were 22.56 g CH4 ton−1 and 259.76 g N2O ton−1, and for SW incineration emission factors were 2959 kg CO2 ton−1, 43.44 g CH4 ton−1 and 401.21 g N2O ton−1, respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO2-eq yr−1 for A facility and 11,082 ton CO2-eq yr−1 for B facility, while those of IPCC default values were 13,167 ton CO2-eq yr−1 for A facility and 32,916 ton CO2-eq yr−1, indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO2-eq yr−1, while those of SW for D to I facilities was 28,830 ton CO2-eq yr−1. The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and emission factors of CH4 showed the opposite trend with those of NO2 when the NOx removal system was used, whereas there was no difference in CO2 emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.