Abstract

Increasing concentrations of the atmospheric greenhouse gases (GHGs) are serious threats to the living beings and their niches. The rapid increase in GHGs is undoubtedly related to anthropogenic activities. Literature related to GHG emissions and mitigation approaches is widely available, but very few reviews concentrated on spatial-temporal trends of GHG emission from the agriculture sector. Agriculture is a potent contributor to GHG emissions, involving different agricultural practices followed by the farmers, which affect the rate of emission either positively or negatively. Agricultural soil management practices add excess nutrients, which disturb the natural mineral cycling leading to soil and water pollution and increase emission from soil to atmosphere, thus contributing to climate change. Research papers and reports related to GHG emission from different agricultural sectors in different parts of the world were reviewed to find the variations in emission pattern and intensities, and the factors influencing the emissions from the soil. The soil GHG emissions are directly or indirectly modified by natural as well as anthropogenic factors, like pH, soil texture, tilling, fertilizer application, mulching, irrigation, etc. The determinants taking part in the soil GHG emissions varied with region and different agricultural practices. Different mitigation approaches for GHGs from the agriculture sector were also compared for their efficacy in reducing emissions. A variety of advanced techniques developed to enhance the yield of crops were found to influence GHG emissions by direct influence on soil pH, temperature, and moisture. The conditions favorable for GHG emissions can be modified to reduce the emissions as the soil acts both as a reservoir and as an emitter of GHGs based on local natural and anthropogenic factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.