Abstract

This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH(4) (2.2 mg m(- 2) h(-1)) than the anaerobic digestion bins (9.5 mg m(-2) h(-1)) and the vermicomposting bins (4.8 mg m(-2) h( -1)). The vermicomposting bins had lower N(2)O emission rates (1.2 mg m(-2) h(- 1)) than the others (1.5-1.6 mg m(-2) h( -1)). Total GHG emissions including both N(2)O and CH(4) were 463, 504 and 694 mg CO(2)-e m(- 2) h(-1) for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N(2)O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.

Full Text

Published Version
Open DOI Link

Get access to 250M+ research papers

Discover from 40M+ Open access, 3M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call