Biology and Fertility of Soils | VOL. 57

Emission of greenhouse gases and soil changes in casts of a giant Brazilian earthworm

Publication Date Mar 18, 2021


Greenhouse gas emissions (CO2, N2O, CH4) and chemical, physical and microbiological properties (pH, macro and micronutrients, texture, moisture, exchangeable NH4+, NO3−, total C and N, organic C, microbial biomass C and metabolic coefficient) were monitored in casts of a large, endogeic native Brazilian earthworm species Rhinodrilus alatus and from non-ingested control soil incubated for up to 32 days. Earthworm casts represented a significantly different chemical and microbiological environment, with higher soil moisture, pH, H + Al, exchangeable NH4, Cu, Fe and Mn contents, lower microbial biomass C and higher metabolic quotient (qCO2), but with few differences in CO2, N2O and CH4 emissions compared with non-ingested control soil. Nonetheless, fermenting, methanogenic and nitrate-reducing microbes encountered ideal conditions for sustained anaerobic activity in the clayey, dense and moist castings of R. alatus, maintaining emission of N2O and CH4 and confirming previous results observed using gut contents. The high exchangeable NH4 and H2O contents influenced the oxy-reduction processes, affected GHG emissions and N transformations and modified soil microbial biomass and activity. In addition, selective ingestion concentrates C and N contents in the casts and transformation processes affect the availability of important plant nutrients, topics that deserve further attention, considering the widespread collection of this species for use as fish-bait in Brazil.


Exchangeable NH4 Higher Metabolic Quotient Non-ingested Soil Lower Microbial Biomass Microbial Biomass NH4 Contents Microbiological Environment Higher Soil Moisture Emission Of Greenhouse Gases Species For Use

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Nov 21, 2022 to Nov 27, 2022

R DiscoveryNov 28, 2022
R DiscoveryArticles Included:  2

No potential conflict of interest was reported by the authors. The conception and design of the study, acquisition of data, analysis and interpretatio...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.