Abstract

ABSTRACTEmission of charged particles from (111) and (100) crystalline silicon surfaces during and following picosecond pulsed laser irradiation in vacuo has been investigated.No thermionic electron emission is observable, setting an upper limit of 5000°K on the electron temperature during the laser pulses at 532 nm and at 266 nm. Equal number of positive and negative particles are emitted when the laser energy fluence is sufficient to cause vaporization of a few surface layers. Significantly larger amount of electrons than that of positive particles are emitted under irradiation with UV pulses at low energy fluences. This phenomenon can be tentatively explained by thermally enhanced photoelectric emission from a molten silicon surface.The presence or absence of the emission of charged particles sets important lower or upper limits on the temperature of the electrons and of the lattice. Our data are fully consistent with a model of complete thermalization between carriers and lattice on a time scale of 10–11 sec.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.