Abstract

The highly resolved temporal evolution of laser-induced micro-explosions on a germanium surface is studied in a triode configuration for various gate charge levels and cathode currents. Electron emission from individual spots is directly imaged with a luminescence screen, showing that the opening angle of the source is about 30°. Electron bunches of several nanocoulombs per pulse in a time interval of about 150 ns are directly extracted to the anode without vacuum breakdown in the cathodic gap. When breakdown occurs, a remarkable change in the arc behavior of a threshold gap potential of around 1 kV is observed, which hints at two different evaporation mechanisms that depend on the cathodic fall of an individual spot. Therefore, for voltages well above the threshold, a fast gate discharge is observed within the first 100–200 ns, followed by fundamental plasma oscillations and an electron emission of several μC per pulse from the plasma boundary. Additionally, highly efficient emission of germanium ion clusters occurs, evidencing a stable twofold electron multiplication in the plasma, with a charge of several μC per pulse below the threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.