Abstract

Quantum dot nanocrystals have particular optical properties due to the quantum confinement effect and the surface effect. This study focuses on the effects of organic materials capping quantum dot on the emission properties of quantum dots. The quantum dots prepared by using 1-hexadecylamine in the synthesis show strong emission, while the quantum dots prepared by using tri-octylphosphine oxide exhibit a suppressed emission and an extra emission related with the surface energy traps. These organic materials cap the quantum dots and make the surface conditions of quantum dots different. TEM images and X-ray diffraction patterns reveal that 1-hexadecylamine constructs a layer on the surface of quantum dot during the synthesis and this surface passivation by a layer of 1-hexadecylamine reduces the surface energy traps. Differently from 1-hexadecylamine, tri-octylphosphine oxide dangles from the surface, which causes a poorly passivated surface. This generates the surface deep trap levels giving rise to a significant and broad emission in the lower energy regime. The optical mechanism is studied by measuring the emission spectra and the time-resolved spectra at various temperatures from 4 K to 300 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.