Abstract
Data on emission of atmospheric pollutants at local scale is essential for accurately modelling forest fire emission at regional scale. In this study, we quantified emission factor (EF) of gaseous pollutants (CO, CO2, NOx, hydrocarbons, organic carbon, and inorganic elements), fine particulate matter (PM2.5), water soluble inorganic ions, and non-methane hydrocarbons (NMHCs) from leaves, branches and barks of five dominant tree species in Chinese boreal region. Results demonstrate that the emission factors of different pollutants varied among tree species and fuel typology. The average total EF (leaves + branches + barks) of different species ranged from 922 ± 116 mg/g to 1383 ± 134 mg/g for CO2; 225 ± 109 mg/g to 277 ± 21 mg/g for CO; 0.6 ± 0.2 mg/g to 3 ± 0.7 mg/g for NOx; 32 ± 6 mg/g to 55 ± 7 mg/g for hydrocarbons; 3 ± 0.3 mg/g to 6 ± 0.7 mg/g for organic carbon; 0.6 ± 0.1 mg/g to 2 ± 0.1 mg/g for elemental carbon; and 4 ± 0.7 mg/g to 12 ± 1 mg/g for PM2.5. The total water soluble ions ranged from 5 ± 0.6 mg/kg to 12 ± 1.3 mg/g. For most of the pollutants, combustion of barks emitted more than that of leaves and branches. A total of 48 types of NMHCs (19 alkanes, 15 alkenes, and 14 aromatic compounds) were released during combustion of leaves, barks, and branches of tree species, with EF ranged from 982 mg/g to 1375 mg/g. Alkenes and i-butane, 1-butene, 1,3-butadiene, Isoprene, 4-Methyl-1-pentene, p-Xylene and benzene were the major ozone-forming compounds. Our results provide a comprehensive emission data by species and fuel typology that can be useful for modelling climate change, source apportionment and atmospheric photochemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.