Abstract

We investigate the structure of accretion disks illuminated by X-rays from a central compact object in a binary system. X-rays can photoionize the upper atmosphere of the disk and form an accretion disk corona (ADC) where emission lines can form. We construct a model to calculate the vertical structure and the emission spectrum of the ADC with parameters appropriate to low-mass X-ray binaries. These models are made by nonlocal thermodynamic equilibrium calculations of ion and level populations and include a large number of atomic processes for 10 cosmically abundant elements. Transfer of radiation is treated by using the escape probability formalism. The vertical temperature profile of the ADC consists of a Compton-heated region and a mid-T zone where the temperature is approximately 10(exp 6) K. A thermal instability occurs close to the disk photosphere and causes the temperature of the ADC to drop abruptly from 10(exp 6) K to several times 10(exp 4) K. The emission spectrum in the optical, ultraviolet, extreme ultraviolet, and X-ray range is discussed and compared with the observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call