Abstract
This is the third paper of a series devoted to the study of the global properties of Joguet's sample of 79 nearby galaxies observable from the southern hemisphere, of which 65 are Seyfert 2 galaxies. We use the population synthesis models of Paper II to derive ‘pure’ emission-line spectra for the Seyfert 2 galaxies in the sample, and thus explore the statistical properties of the nuclear nebular components and their relation to the stellar populations. We find that the emission-line clouds suffer substantially more extinction than the starlight, and we confirm the correlations between stellar and nebular velocity dispersions and between emission-line luminosity and velocity dispersions, although with substantial scatter. Nuclear luminosities correlate with stellar velocity dispersions, but Seyferts with conspicuous star-forming activity deviate systematically towards higher luminosities. Removing the contribution of young stars to the optical continuum produces a tighter and steeper relation, L∝σ4★, consistent with the Faber-Jackson law. Emission-line ratios indicative of the gas excitation such as [O iii]/Hβ and [O iii]/[O ii] are statistically smaller for Seyferts with significant star formation, implying that ionization by massive stars is responsible for a substantial and sometimes even a dominant fraction of the Hβ and [O ii] fluxes. We use our models to constrain the maximum fraction of the ionizing power that can be generated by a hidden active galactic nucleus (AGN). We correlate this fraction with classical indicators of AGN photoionization (i.e. X-ray luminosity and nebular excitation), but find no significant correlations. Thus, while there is a strong contribution of starbursts to the excitation of the nuclear nebular emission in low-luminosity Seyferts, the contribution of the hidden AGN remains elusive even in hard X-rays.
Full Text
Topics from this Paper
Stellar Velocity Dispersions
Hidden Active Galactic Nucleus
Active Galactic Nucleus
Low-luminosity Seyferts
Nebular Excitation
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
The Astrophysical Journal
Oct 1, 2022
Monthly Notices of the Royal Astronomical Society
Feb 26, 2022
arXiv: High Energy Astrophysical Phenomena
Jul 10, 2017
The Astrophysical Journal
Jan 22, 2018
arXiv: Astrophysics of Galaxies
Aug 23, 2011
arXiv: Astrophysics
Mar 7, 2007
arXiv: Astrophysics of Galaxies
Jul 16, 2020
arXiv: Astrophysics
Mar 7, 2007
Monthly Notices of the Royal Astronomical Society
Mar 1, 2006
arXiv: Astrophysics
May 25, 2000
arXiv: Astrophysics
May 12, 2000
Monthly Notices of the Royal Astronomical Society
Monthly Notices of the Royal Astronomical Society
Nov 27, 2023
Monthly Notices of the Royal Astronomical Society
Nov 27, 2023
Monthly Notices of the Royal Astronomical Society
Nov 27, 2023
Monthly Notices of the Royal Astronomical Society
Nov 27, 2023
Monthly Notices of the Royal Astronomical Society
Nov 27, 2023
Monthly Notices of the Royal Astronomical Society
Nov 27, 2023
Monthly Notices of the Royal Astronomical Society
Nov 27, 2023
Monthly Notices of the Royal Astronomical Society
Nov 27, 2023
Monthly Notices of the Royal Astronomical Society
Nov 27, 2023
Monthly Notices of the Royal Astronomical Society
Nov 27, 2023