Abstract

The photoluminescence (PL) spectra acquired from 1 to 6 nm large carbon quantum dots (CQDs) prepared by refluxing activated carbon in HNO3 show blue emission independent of the excitation wavelength as well as long-wavelength emission depending on the excitation wavelength. The dependence of the two emissions on pH is investigated, and the experimental results show that the peak position of the long-wavelength emission does not change with pH; however, the blue emission becomes more asymmetrical, and obvious shoulder peaks emerge as the pH increases. A model based on defect-bound trions in the CQDs is proposed to explain the shoulder peaks in the blue emission at high pH, and the calculated results agree well with experimental data concerning the integral intensity ratio of the trion to exciton emissions versus pH. Our experimental and theoretical results demonstrate for the first time emission from trions in CQDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.