Abstract

An acetylene–acrylate polymer hybrid film with enhanced emission, chemical resistance, and photooxidative stability was successfully prepared by the photopolymerization of acrylates in situ in poly[1-phenyl-2-(p-trimethylsilyl)phenylacetylene] (PTMSDPA) film. An acrylate mixture of methyl acrylate (MA) and trimethylol propanetriacrylate (TMPTA) easily diffused into PTMSDPA film, and simultaneously, the emission of the PTMSDPA film significantly increased. Subsequently, when the acrylate-deposited PTMSDPA film was irradiated by UV light at the appropriate irradiation power, the acrylate monomers were readily polymerized in situ in PTMSDPA film. The hybrid film still retained enhanced emission after the photopolymerization. Moreover, the hybrid film hardly dissolved in toluene even after immersing for several minutes, whereas the PTMSDPA film immediately dissolved in toluene. The hybrid film also showed photooxidative stability in air, as compared to the PTMSDPA film, due to the oxygen-blocking effect of the acrylate components. Photomasked UV irradiation of the acrylate-deposited PTMSDPA film led to a highly resolved, fluorescent image pattern on the hybrid film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call