Abstract

A campaign was carried out to measure the emission characteristics of volatile organic compounds (VOCs) in different areas of a petroleum refinery in the Pearl River Delta (PRD) region in China. In the refining area, 2-methylpentane, 2,3-dimethylbutane, methylcyclopentane, 3-methylhexane, and butane accounted for >50% of the total VOCs; in the chemical industry area, 2-methylpentane, p-diethylbenzene, 2,3-dimethylbutane, m-diethylbenzene and 1,2,4-trimethylbenzene were the top five VOCs detected; and in the wastewater treatment area, the five most abundant species were 2-methylpentane, 2,3-dimethylbutane, methylcyclopentane, 3-methylpentane and p-diethylbenzene. The secondary organic aerosol (SOA) formation potential was estimated using the fractional aerosol coefficients (FAC), secondary organic aerosol potential (SOAP), and SOA yield methods. The FAC method suggests that toluene, p-diethylbenzene, and p-diethylbenzene are the largest contributors to the SOA formation in the refining, chemical industry, and wastewater treatment areas, respectively. With the SOAP method, it is estimated that toluene is the largest contributor to the SOA formation in the refining area, but o-ethyltoluene contributes the most both in the chemical industry and wastewater treatment areas. For the SOA yield method, aromatics dominate the yields and account for nearly 100% of the total in the three areas. The SOA concentrations estimated of the refining, chemical industry and wastewater treatment areas are 30, 3835 and 137μgm-3, respectively. Despite the uncertainties and limitations associated with the three methods, the SOA yield method is suggested to be used for the estimation of SOA formation from the petroleum refinery. The results of this study have demonstrated that the control of VOCs, especially aromatics such as toluene, ethyltoluene, benzene and diethylbenzene, should be a focus of future regulatory measures in order to reduce PM pollution in the PRD region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.