Abstract

Besides organic pollutants, coke production generates emissions of toxic heavy metals. However, intensive studies on heavy metal emissions from the coking industry are still very scarce. The current work focuses on assessing the emission characteristics of heavy metals and their behavior during coking. Simultaneous sampling of coal, coke, residues from air pollution control devices (APCD), effluent from coke quenching, and fly ash from different processes before and after APCD has been performed. The total heavy metal concentration in the flue gas from coke pushing (CP) was significantly higher than that from coal charging (CC) and combustion of coke oven gases (CG). Emission factors of heavy metals for CP and CC were 378.692 and 42.783 μg/kg, respectively. During coking, the heavy metals that were contained in the feedstock coal showed different partitioning patterns. For example, Cu, Zn, As, Pb, and Cr were obviously concentrated in the inlet fly ash compared to the coke; among these metals Cu, As, and Cr were concentrated in the outlet fly ash, whereas Zn and Pb were distributed equally between the outlet fly ash and APCD residue. Ni, Co, Cd, Fe, and V were partitioned equally between the inlet fly ash and the coke. Understanding the behavior of heavy metals during coking processes is helpful for the effective control of these heavy metals and the assessment of the potential impact of their emissions on the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.